US009442970B1

a2 United States Patent

Gavrin et al.

US 9,442,970 B1
Sep. 13, 2016

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM AND METHOD FOR
ASYNCHRONOUS UPDATE OF A SEARCH

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

INDEX

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Alexander Gavrin, Moscow (RU);
Raymond T. Jones, Jr., Salem, VA
(US); Paulo H. Paulin, Florianopolis
(BR); Jorge A. Senger, Hortolandia
(BR); Maksim Vinokurov, Moscow
RU)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/989,977

Filed: Jan. 7, 2016

Int. C1.

GO6F 7/00 (2006.01)

GO6F 17/30 (2006.01)

U.S. CL

CPC ... GO6F 17/30353 (2013.01); GO6F 17/30011

(2013.01); GOGF 17/30
17/30613 (2013

Field of Classification Search
CPC

117 (2013.01); GO6F
01); GOGF 17/30896
(2013.01)

GOGF 17/30896

See application file for complete search history.

100

1
Reprocessing |
|

(56) References Cited

U.S. PATENT DOCUMENTS

8,694,503 Bl 4/2014 Naga

8,756,206 B2 6/2014 Kumar

8,868,526 B2 10/2014 Balakrishnan
2011/0219008 Al 9/2011 Been
2012/0030188 Al 2/2012 Gutlapalli
2012/0078859 Al 3/2012 Vaitheeswaran

Primary Examiner — Ajith Jacob
(74) Attorney, Agent, or Firm — George R. McGuire; Bond
Schoeneck & King, PLLC; John Pivnichny

57 ABSTRACT

A method for maintaining a document database and search
index includes the steps of: (i) receiving a plurality of
document action requests including one or more of a create
document action request, a refresh document action request,
a refreshfull document action request, an update document
action request, or a delete document action request; (ii)
creating a timestamp for each of the plurality of received
document action requests; (iii) querying the document action
requests to determine which are associated with a first
document action request type; (iv) processing any of the
document action requests of the first document action
request type, where the document action requests are pro-
cessed in the order of their associated timestamp, with
earlier document action requests of the first document action
request type being processed first; and (v) updating the
search index using the updated document database.

20 Claims, 3 Drawing Sheets

UPDATE TOA
NEW_TOA

Backend
110

=
&

Scarch Index (Si)

=
2
&
e
=

REFRESH_TOA
REFRESHFULL_TOA

fields

Sectioti 1..N + timestamyp

Original document body

Originai HATML head

Document
content for
full text
scarch

]
Taxonomy |
data

Ouiginal optional (External)
metadata

f

Data Processing

{Block
cac h

[Do Submier_Ja-—other
Refresh
Retreshiull

Update

Request

Tool Taxonomy or
Tags fields to be

Push updated

Optional
(External)
Metadata

Docoraent
content

Puorge D\.lenm s \

'\ Updte Tool | Jaso diff
toof

f\ 4\\ ,

LPTOA
itorags /

U.S. Patent Sep. 13,2016 Sheet 1 of 3 US 9,442,970 B1

100
Backend
116
UPDATE_TOA R
Search Index (S} =
NEW TOA . > BT
DELETE TOA
REFRESH_TOA Fields
REFRESHFULL TOA
Section 1..N + timestamp Document
Original document bady fzont_ent_for
full text Taxonomy
Original HTML head search data
Original optional (Exteraal) 4 / b
metadata
4 A | Data Processing I
v
Purge Deletions |\
Block ‘ o
. each Update Tool Taxo ‘;iﬁ
100
Data Submitter other 1 / ry
Refresh /
Refreshiull /
Update LPTOA /
Reprocessing Request storage /
Tool Taxononty or / Taxonomy
Tags fields to be / data
. ¥
Push updated E-
Reprocessing
; tool
Optional Document
(External) content
Metadata)

F1G. 1

US 9,442,970 B1

Sheet 2 of 3

Sep. 13, 2016

U.S. Patent

¢ DM

HNNILNOD
- (passanord ou pur
aiow st dWRISOW V(3L

FONLINOD
- i poassavoxd jou pus

arow st dwwissuin VO

dU¥S - $VOL ALY AN
< VOL ALAT3

N T 10 V0oL AEN
,,,,, AW\MWMM%—WW: mcrmw - %nwmwougq ot <VOL dLdT4U
pug ssa| dmgsauny VoL pug 559] ClEpRadil VOL
ANLLNOD
HOANLINOD - (pessasord jou pue

- ; passeonsd jou pue
arow st dwesswiny VoL

axow st dwegsanns VO

ANNELNOD
- i passanoxd jou pue
arow st duwpisaun: YO L

X d0.1LS ~ ¢ passaooid j0u
TN ; ue 5591 drRISAWN VO, , .
~ wmwmwo(wwww wcc v { HVOL JOLS — (passavoxd jou
pue ssop dweisownl vO L dDIS - LVO Wlw LA pue $s3 duesown v
> VOL MEN
ANNIINOGD RIT T i
- cpassanosd 1ou pue HNNIINOD HANILNOGD
- (passadoud jou pue - ¢ passadoxd jou pus

srow sy dwwsswn vouL

ouows st dggsawy vO L

010w st dwreisoun; VO

X
B mmwvzwwwwwo: dOLS — ¢pessasosd j0u dOLS — ¢ passaooud Jou
pue mmw_ aﬂwﬂnﬁmm&: VOl pue ssaf dumisows; VO L pue ssop dwreisowy yO L
AIINLLNOD AANIINOD ANNLLNOD

- ;passoonxd jou puw
aIouw $t dWIBISAUN VOLL

HONLLNGD
— ¢ passaooid 10U
pue ssaj durepsonny VO

- ipassasoxd jou puz
arow 1 dumisoun vO 1

d0OLS — ;passadod jou
pue ssop daweysoun VOL

- passanosd 1ou pur
arow st diugisowin; O L

dOLS — ¢passasold jou
pup ss9| duwpisamin YOI

X

U.S. Patent Sep. 13,2016 Sheet 3 of 3 US 9,442,970 B1

300

Provide an SSoR system

310

s

Receive, at the SSoR, one or more document action requests

320

.
-

Create a timestamp for each of the one or more document action requests

330

-

The one or more document action requests are processed in a specific order

340

-

Update the search index
330

FIG. 3

US 9,442,970 B1

1
SYSTEM AND METHOD FOR
ASYNCHRONOUS UPDATE OF A SEARCH
INDEX

FIELD OF THE INVENTION

The present invention is directed to methods and systems
for accurately maintaining a document database and asso-
ciated search index which are constantly being updated.

BACKGROUND

A Source System of Record (“SSoR”) is an information
storage and retrieval system that is the authoritative source
for a particular data element or piece of information in a
system containing multiple sources of the same element. To
ensure data integrity, there must be one—and only one—
system of record for a given piece of information. Often, a
large network with multiple information systems or sources
may disagree about a data element or piece of information.
These disagreements may stem from semantic differences,
use of different sources, or may simply be the result of an
error or bug, among other causes.

If there is no association with a reputable source, such as
the SSoR, the integrity and validity of any piece of data can
be suspect. Accordingly, maintaining SSoR is often a key
requirement for Enterprise Search solutions, which assumes
continuous data updates from one or more content authors,
called the “push.” The original data submitted by the one or
more content authors must be stored in SSoR to allow
reprocessing without being dependent on the content
authors. The ability to reprocess data is an essential require-
ment, for example, for systems which use taxonomy-based
drill-down. If taxonomy is changed, affected documents
have to be reprocessed to ensure taxonomy changes are
reflected in the appropriate index fields.

This need to reprocess and update must be balanced with
the need to use the same data to build an optimized index,
such as a Search Index (SI) for the search frontend via one
or more predefined rules. Often service-level agreements
with content authors may define a certain maximum time for
a document to reach a frontend index. Accordingly, it is
important to ensure that the requirements of the service-level
agreements are met even when the documents and/or meta-
data have to be recalculated from SSoR.

Existing enterprise search solutions do not allow repro-
cessing of data while accepting new push, update, and/or
delete requests. Accordingly, these solutions block incoming
requests whenever reprocessing occurs, usually by queueing
them, or they queue updates via batches and process them
one batch after another. This solution results in significant
delays in content processing, which can interfere with effi-
ciency, and in many cases can violate the terms of one or
more service-level agreements which define a certain maxi-
mum time for a document to reach a frontend index.

Accordingly, there is a continued need in the art for
systems and methods that allow on-demand updating of a
search index from SSoR while simultaneously accepting
push, update, and/or delete requests from content authors.

SUMMARY OF THE INVENTION

The disclosure is directed to inventive methods and
systems for accurately maintaining a constantly-updated
document database and associated search index. The search
index is asynchronously updated from SSoR while accepting
push, update, and/or delete requests from content authors.

10

15

20

25

30

35

40

45

50

55

60

65

2

The system maintains the integrity of data for situations
where push, update, and/or delete requests of the same SSoR
documents are received while the search index is simulta-
neously being updated. According to an embodiment, the
asynchronous updating process comprises a number of sub-
processes. To ensure integrity of data and obtain the fastest
and most efficient processing time, there are specific rules
regulating how the sub-processes function and how they
push data from SSoR into the search index.

According to this aspect there is a method for accurately
maintaining a constantly-updated document database and
associated search index. The method includes the steps of:
(1) receiving a plurality of document action requests, where
the plurality of document action requests comprise at least
one of a create document action request, an update document
action request, or a delete document action request; (ii)
associating a timestamp with each of the plurality of
received document action requests; (iii) querying the docu-
ment action requests to determine which are associated with
a first document action request type; (iv) processing any of
the document action requests of the first document action
request type, where the document action requests are pro-
cessed in the order of their associated timestamp, with
earlier document action requests of the first document action
request type being processed first; and (v) updating the
search index using the updated document database.

According to an embodiment, the method further includes
the steps of querying the document action requests to
determine which are associated with a second document
action request type; and processing any of the document
action requests of the second document action request type,
where the document action requests are processed in the
order of their associated timestamp, with earlier document
action requests of the second document action request type
being processed first; and where the document action
requests of the second document action request type are
processed only if the document action requests of the first
document action request type have been processed.

According to an embodiment, the method further includes
the steps of querying the document action requests to
determine which are associated with a third document action
request type; and processing any of the document action
requests of the third document action request type, where the
document action requests are processed in the order of their
associated timestamp, with earlier document action requests
of the third document action request type being processed
first; and where the document action requests of the third
document action request type are processed only if the
document action requests of the second document action
request type have been processed.

According to an embodiment, create document action
requests are processed first, update document action requests
are processed second, and delete document action requests
are processed last

According to an embodiment, the search index is based on
document content, taxonomy data, and/or additional meta-
data fields.

According to an embodiment, the method further includes
the step of creating a database record for each document
action request, wherein the database record comprises docu-
ment data and document metadata.

According to an embodiment, the document metadata
comprises the timestamp for said document action request.

According to an embodiment, each type of document
action request is processed by a different sub-process, and

US 9,442,970 B1

3

further wherein each sub-process is associated with a time
that the sub-processed last processed a document action
request.

According to an embodiment, the time that the sub-
process last processed a document action request is stored in
the database and will be updated when the same action is
requested again against the same document.

According to an embodiment, each sub-process is asso-
ciated with a predetermined processing time threshold.

According to an embodiment, the method further includes
the step of terminating a sub-process if the predetermined
processing time threshold is exceeded.

According to an aspect is an SSoR system. The system
includes: a document database comprising a plurality of
documents; a search index; and a processor in communica-
tion with the document database and the search index. The
processor is configured to: (i) receive a plurality of docu-
ment action requests, the plurality of document action
requests comprising at least one of a create document action
request, an update document action request, or a delete
document action request; (ii) associate a timestamp with
each of the plurality of received document action requests;
(iii) query the document action requests to determine which
are associated with a first document action request type; (iv)
process any of the document action requests of the first
document action request type, wherein the document action
requests are processed in the order of their associated
timestamp, with earlier document action requests of the first
document action request type being processed first; and (v)
update the search index using the updated document data-
base.

According to an embodiment, the processor is further
configured to: (i) query the document action requests to
determine which are associated with a second document
action request type; and (ii) process any of the document
action requests of the second document action request type,
wherein the document action requests are processed in the
order of their associated timestamp, with earlier document
action requests of the second document action request type
being processed first, wherein the document action requests
of the second document action request type are processed
only if the document action requests of the first document
action request type have been processed.

According to an embodiment, the processor is further
configured to: (i) query the document action requests to
determine which are associated with a third document action
request type; and (ii) process any of the document action
requests of the third document action request type, wherein
the document action requests are processed in the order of
their associated timestamp, with earlier document action
requests of the third document action request type being
processed first, wherein the document action requests of the
third document action request type are processed only if the
document action requests of the second document action
request type have been processed.

These and other aspects of the invention will be apparent
from the embodiments described below.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer
to the same parts throughout the different views. Also, the
drawings are not necessarily to scale, emphasis instead
generally being placed upon illustrating the principles of the
invention.

FIG. 1 is a schematic representation of a Source System
of Record (“SSoR”), in accordance with an embodiment.

20

30

40

45

55

60

65

4

FIG. 2 is a table of rules for an SSoR processing system
and method, in accordance with an embodiment.

FIG. 3 is a flow chart of a method for maintaining a search
index while updating an SSoR, in accordance with an
embodiment.

DETAILED DESCRIPTION

The present disclosure is directed to embodiments of a
method and system for updating a document database and
associated search index. According to an embodiment, the
search index is updated from SSoR while accepting push,
update, and/or delete requests from content authors. The
system maintains the integrity of data for situations where
push, update, and/or delete requests of the same SSoR
documents are received while the search index is simulta-
neously being updated. According to an embodiment, the
asynchronous updating process comprises a number of sub-
processes. To ensure integrity of data and obtain the fastest
and most efficient processing time, there are specific rules
regulating how the sub-processes function and how they
push data from SSoR into the search index.

Referring to FIG. 1 is a data flow diagram 100 for
maintaining a document database while simultaneously
updating a search index for that document database. System
100 includes, for example, a Backend 110 and a Frontend
120. At the backend, for example, the system maintains the
document database, including accepting push, update, and/
or delete requests from one or more content authors, and
maintaining/updating a search index. At the frontend, for
example, the system offers a search index for a searcher to
enter search terms for searching the document database.
Accordingly, frontend 120 of system 100 can include, for
example, a graphical user interface (“GUI”) to receive
search terms and present search results to the searcher.

According to an embodiment, system 100 utilizes an
asynchronous process which updates the search index from
the SSoR. The process contains a number of sub-processes
which, according to an embodiment, are called “Workers.”
To ensure on-demand updating of a search index from SSoR
while simultaneously accepting push, update, and/or delete
requests from content authors, the process comprise rules
that regulate how Workers function and how they push data
from SSoR into the search index to insure integrity of data
and fastest processing time.

Each sub-process, or Worker, is responsible for executing
a particular action. For example, there can be the following
Workers: (i) DeleteWorker (executing a deleting action to
delete a document); (ii) New Worker (executing a new action
to create a new document); (iii) UpdateWorker (executing an
update action to update a document, which can including
making some metadata changes); (iv) RefreshWorker (ex-
ecuting an update action to update the document’s meta-
data); (v) RefreshFullWorker (executing a RefreshFull
action to update a full document, including the document’s
content).

Each worker functions within one or more predefined
thresholds, which can be established individually for each
worker. Thresholds can include, for example, the number of
documents to retrieve, maximum time to run, number of
documents per page, and many more. According to an
embodiment, each worker utilizes a caching approach to
navigate through results, thereby minimizing resources. Fur-
ther, each worker can request only appropriate fields. For
example, the body of a document will be requested by the

US 9,442,970 B1

5

New Worker and RefreshfullWorker processes. Each worker
may also only use a configurable threads pool to submit
requests.

According to an embodiment, each document in the SSoR
has a field to store a timestamp for each action set by a data
submitter. The Time of Action (TOA) timestamp can be
stored as a field with the Worker, such as
WorkerUpdate_TOA or WorkerUpdateTOA.

The system may also include a stamp, field, or database
with information about the last processed time of action
(“LPTOA”), which is the timestamp of the last time a
document was processed by a Worker.

To ensure integrity of the search index while SSoR
continuously receives new push operations, the Workers can
function in a pattern or order where actions are processed
sequentially. Each action can be executed alone with appro-
priate runtime thresholds. Thus, if a Worker takes too long
to execute and meets the runtime threshold, the Worker must
stop and the next Worker can begin to execute. Each Worker
can first execute a query against SSoR, to retrieve records
which were not yet processed by that Worker/action, based
on the appropriate TOA, and can process each record from
the oldest unprocessed record.

According to an embodiment, therefore, each Worker
stores its last processed TOA (called the “LPTOA™) to be
used at a later time as a starting point for processing. Some
Workers also need to check the LPTOA of other Workers to
make a decision about whether to continue processing a
document or stop processing the document. An example of
this condition is when a “New” request comes after “Delete”
for a certain document, the NewWorker process can access
the document but learns that the DeleteWorker did not yet
process the document; the New Worker exits and lets the next
Worker run.

According to an embodiment, there is a special PurgeDe-
letions process which is responsible for cleaning up docu-
ments marked for deletion from the SSoR, such as those
which were already deleted from the search index by the
DeleteWorker. To ensure integrity of data, the PurgeDele-
tions process should not run in parallel with the data
submitter.

According to an embodiment, the system reduces the
required processing time for different actions. For example,
according to existing methods if an author or content creator
submits numerous “New” actions, all other requests from
others would have to wait until the “New” actions have been
completely processed. Pursuant to the current invention,
however, the system does not hold up other “Delete” and
“Update” requests unless they involve the same document.
In that situation, the integrity check will force the appropri-
ate Worker to stop and wait in order.

Worker Processing

Referring to FIG. 2, in accordance with an embodiment,
is a Table containing a summary of all rules for the various
Workers. Functioning of each of the Workers within the
ruleset is discussed in more detail below.

1. DeleteWorker

According to an embodiment, the system receives a
command for an action to be executed by the DeleteWorker
process. At a first step, the system loads the last processed
TOA for each Worker ([Worker]_LPTOA), a total of five
LPTOAs. At a second step, the system executes the query to
the SSoR with a filter: DELETE_TOA>DELETE_LPTOA
(stored externally).

Thus, according to an embodiment, the system requests
the following fields: DELETE_TOA; NEW_TOA; UPDA-

10

15

20

25

30

35

40

45

50

55

60

65

6
TE_TOA,; and URL/other. For each document, as shown in
FIG. 2, the following rules are followed:

a. IF (UPDATE_TOA<DELETE_TOA) AND
(UPDATE_TOA>UPDATE_LPTOA) then STOP
execution, and exit; and

b. IF (NEW_TOA<DELETE_TOA) AND

(NEW_TOA>NEW_LPTOA) then STOP execution,
and exit.

c. IF the above rules fail and the document is to be deleted,
it can be deleted from the main index via the delete
request

d. Update DELETE_TOA=>DELETE_LPTOA (stored
externally)

e. Check for Worker execution time to be less than
threshold; stop if execution time exceeds time thresh-
old.

f. Proceed to the next document if any more are available
(can include pagination if needed).

2. UpdateWorker

According to an embodiment, the system receives a
command for an action to be executed by the UpdateWorker
process. At a first step, the system loads the last processed
TOA for each Worker ([Worker]_LPTOA), a total of five
LPTOAs. At a second step, the system executes the query to
the SSoR with a filter: UPDATE_TOA>UPDATE_LPTOA
(stored externally).

Thus, according to an embodiment, the system requests
the following fields: DELETE_TOA; NEW_TOA; UPDA-
TE_TOA; REFRESH TOA; REFRESHFULL_TOA;
HTML head; External Metadata; and URL/other. For each
document, as shown in FIG. 2, the following rules are
followed:

a. IF (DELETE_TOA>NEW_TOA) then SKIP, because

the document is scheduled for deletion and thus there is
no need to update;

b. IF (DELETE_TOA<UPDATE_TOA) AND
(DELETE_TOA>DELETE_LPTOA) then STOP
execution, and exit;

c. IF (NEW_TOA<UPDATE_TOA) AND

(NEW_TOA>NEW_LPTOA) then STOP execution,
and exit;

d. Check the TOA for each section, choose section(s)
which TOA matches UPDATE_TOA, and that is a
section(s) which has to be updated in the main index;

e. Update the section(s);

f. Update UPDATE_TOA=>UPDATE_LPTOA (stored
externally);

g. Check for worker execution time to be less than the
threshold, and stop if execution time exceeds time
threshold;

h. Proceed to the next document if any more are available.

3. NewWorker

According to an embodiment, the system receives a
command for an action to be executed by the NewWorker
process. At a first step, the system loads the last processed
TOA for each Worker ([Worker]_LPTOA), a total of five
LPTOAs. At a second step, the system executes the query to
the SSoR with a filter: NEW_TOA>NEW_LPTOA (stored
externally).

Thus, according to an embodiment, the system requests
the following fields: DELETE_TOA; NEW_TOA; UPDA-
TE_TOA; REFRESH_TOA; REFRESHFULL_TOA; SEC-
TION 1 . . . N: all fields+TS; HTML head; External
Metadata; Document Content; and URL/other. For each
document, as shown in FIG. 2, the following rules are
followed:

US 9,442,970 B1

7
a. IF (UPDATE_TOA<NEW_TOA) AND
(UPDATE_TOA>UPDATE_LPTOA) then STOP
execution, and exit;
b. IF (NEW_TOA<NEW_TOA) AND

(NEW_TOA>NEW_LPTOA): STOP execution, and
exit

c. Push document

d. Update NEW_TOA=>NEW_LPTOA (stored exter-
nally)

e. Check for worker execution time to be less than the
threshold, and stop if execution time exceeds time
threshold;

f. Proceed to the next document if any more are available.

4. RefreshWorker

According to an embodiment, the system receives a
command for an action to be executed by the RefreshWorker
process. At a first step, the system loads the last processed
TOA for each Worker ([Worker]_LPTOA), a total of five
LPTOAs. At a second step, the system executes the query to
the SSoR with a filter:
REFRESH_TOA>REFRESH_LPTOA (stored externally).

Thus, according to an embodiment, the system requests
the following fields: DELETE_TOA; NEW_TOA; UPDA-
TE_TOA; REFRESH_TOA; REFRESHFULL_TOA; SEC-
TION 1 . . . N: all fields+TS; HTML head; External
Metadata; and URL/other. For each document, as shown in
FIG. 2, the following rules are followed:

a. —IF (NEW_TOA<DELETE_TOA) AND
(UPDATE_TOA<DELETE_TOA) then SKIP refresh,
and go to next document (this means the latest docu-
ment status is to be deleted, so no need to update)

b. —Send update request for: SECTION 1 . . . N: all
fields; HTML head; ExternalMetadata; URL/other

c. Update REFRESH_TOA=>REFRESH_LPTOA
(stored externally)

d. Check for worker execution time to be less than the
threshold, and stop if execution time exceeds time
threshold;

e. Proceed to the next document if any more are available

5. RefreshfullWorker

According to an embodiment, the system receives a
command for an action to be executed by the RefreshFull-
Worker process. At a first step, the system loads the last
processed TOA for each Worker ([Worker]_LPTOA), a total
of five LPTOAs. At a second step, the system executes the
query to the SSoR with a filter:
REFRESHFULL_TOA>REFRESHFULL_LPTOA (stored
externally).

Thus, according to an embodiment, the system requests
the following fields: DELETE_TOA; NEW_TOA; UPDA-
TE_TOA; REFRESH_TOA; REFRESHFULL_TOA; SEC-
TION 1 . . . N: all fields+TS; HTML head; External
Metadata; Document Content; and URL/other. For each
document, as shown in FIG. 2, the following rules are
followed:

a. IF (NEW_TOA<DELETE_TOA) AND
(UPDATE_TOA<DELETE_TOA) then SKIP refresh,
and go to next document (that means the latest docu-
ment status is to be deleted—no need to update)

b. Send update request forr—SECTION 1 . . . N: all
fields+TS; HTML head; ExternalMetadata; Document
Content; URL/other

c. Update REFRESHFULL_TOA=>
FULL_LPTOA (stored externally)

REFRESH-

10

15

20

25

30

35

40

45

55

60

65

8

d. Check for worker execution time to be less than the
threshold, and stop if execution time exceeds time
threshold;

e. Proceed to the next document if any more are available

EXAMPLE 1

According to an embodiment is an example using a
method for ensure the integrity of the search index while
SSoR continuously receives new push operations. A data
submitter, in this example, a total of 57 requests were
received from a data submitter with the following time-
stamps and document IDs:

[1] 00:01—doc]—NEW

[2] 00:02—doc2—NEW

[3] 00:03—doc3—NEW

[20] 00:20—doc20—NEW
[21] 00:21—doc21—NEW

[50] 00:50—doc50—NEW

[51] 00:51—doc48—UPDATE

[52] 00:52—doc49—UPDATE

[53] 00:53—doc10—DELETE

[54] 00:54—doc12—REFRESH

[55] 00:55—doc50—REFRESH

[56] 00:56—doc48—DELETE

[57] 00:57—doc50—DELETE

According to an embodiment, the system utilizes the
Workers in the following order:

1. NEW
. UPDATE
. DELETE
. REFRESH
. REFRESHFULL
NEW
. UPDATE
. DELETE

9. REFRESH

10. REFRESHFULL

11. ETC.

At a first step, the NewWorker starts and NEW_LPTOA
is set to 0. UPDATE_LPTOA(=0) and DELETE_LPTOA
(=0) are retrieved. Documents are queried with
ACTION=NEW & NEW_TOA>0, and the documents with
a NEW action are returned (doc1, doc2, doc3, doc20, doc21,
doc 50). These documents are then processed in the order of
their timestamps. For each document the following is per-
formed, with doc10 as an example:

a. Retrieve: NEW_TOA (=00:10) (timestamp of NEW

operation); UPDATE_TOA(=0); DELETE_TOA (=00:
53); REFRESH_TOA (=0); REFRESHFULL_TOA
(=0); HTML head+metadata+body;

b. Apply the following: is NEW_TOA (=00:10)>UPDA-
TE_TOA (=0) (ves) AND UPDATE_LPTOA (=0)<UP-
DATE_TOA (=0) (no)?=>CONTINUE (is there an
earlier unprocessed UPDATE request—no);

c. Apply the following: is NEW_TOA
(=00:10)>DELETE_TOA (=00:53) (no) AND
DELETE_LPTOA (=0)<DELETE_TOA =0)
(n0)?=>CONTINUE (is there an earlier unprocessed
DELETE request—no);

d. Create a new document in the index;

e. Apply NEW_LPTOA:=00:10 (doc10_NEW_TOA);

f. Ask are the thresholds (number of docs/time of execu-
tion) met or in danger of being met?;

g. Proceed to the next document;

[N e NV NIV

US 9,442,970 B1

9

h. Assuming last processed document was doc20 when
time threshold met (NEW_LPTOA=00:20); and

i. STOP.

At a first step, the UpdateWorker starts and UPDATE_LP-
TOA is set to 0. NEW_LPTOA(=00:20) and DELETE_LP-
TOA(=0) are retrieved. Documents are queried with
ACTION=UPDATE & UPDATE_TOA>UPDATE_LPTOA
(=0). Documents doc48 and doc49 are then returned from
the query. These documents are then processed in the order
of their timestamps. For each document the following is
performed, with documents doc48 and doc49 as an example,
starting with doc48:

a. Retrieve: NEW_TOA (=00:48) (timestamp of NEW
operation); UPDATE_TOA(=00:51); DELETE_TOA
(=00:56); REFRESH_TOA (=0); REFRESHFULL,_
TOA (=0); HTML head+metadata+body;

b. Apply the following: is DELETE_TOA (00:56)>NEW_
TOA (00:48) (yes) (is there later DELETE request—
yes)=>skip (document will be deleted anyway later);
UPDATE_LPTOA:=00:51 (doc48_UPDATE_TOA)

Then, doc 49 is processed:

a. Retrieve: NEW_TOA (=00:49) (timestamp of NEW
operation); UPDATE_TOA(=00:52; DELETE_TOA
(no DELETE action executed yet); REFRESH_TOA
(=0); REFRESHFULL,_TOA (=0); HTML head+meta-
data+body;

b. Apply the following: is DELETE_TOA (=0)>NEW_
TOA (=00:49) (no) ? (is there later DELETE request—
no)=>then proceed to processing;

c. Apply the following: is UPDATE_TOA (=00:52)>
DELETE_TOA (=0) (ves) AND DELETE_LPTOA
(=0)<UPDATE_TOA (=0) (no)?=>CONTINUE (is
there earlier unprocessed DELETE—no);

d. Apply the following: is UPDATE_TOA (=00:52)>
NEW_TOA (00:49) (yes) AND NEW_LPTOA (=00:
20)<NEW_TOA (=00:49) (yes)?=>(is there earlier
unprocessed NEW—yes) then STOP.

At a first step, the DeleteWorker starts and DELETE_LP-
TOA is set to 0. NEW_LPTOA(=00:20) and DELETE_LP-
TOA(=00:51) are retrieved. Documents are queried with
ACTION=DELETE & DELETE_TOA>DELETE_LPTOA
(=0). Documents doc10, doc48, and doc50 are then returned
from the query. These documents are then processed in the
order of their timestamps. For each document the following
is performed, with document doc 10 as an example:

a. Retrieve: NEW_TOA (=00:10) (timestamp of NEW
operation); UPDATE_TOA(=00:53); DELETE_TOA
(=0); REFRESH_TOA (=0); REFRESHFULL_TOA
(=0); URL;

b. Apply the following: is DELETE_TOA (=00:53)>
NEW_TOA (=00:10) (ves) AND NEW_LPTOA (=00:
20)<NEW_TOA (=00:10) (no)?=>ok, processing (is
there earlier unprocessed NEW request—no);

c. Apply the following: is DELETE_TOA (=00:53)>UP-
DATE_TOA (=0) (yes) AND UPDATE_LPTOA (=00:
S1)<UPDATE_TOA (=0) (no)?=>ok, processing (is
there earlier unprocessed UPDATE request—no);

d. Delete document from the index and set DELETE_LP-
TOA=00:53

Then document doc48 is processed:

a. Retrieve: NEW_TOA (=00:48) (timestamp of NEW
operation); UPDATE_TOA(=00:51); DELETE_TOA
(=00:56); REFRESH_TOA (=0); REFRESHFULL,_
TOA (=0); URL;

b. Apply the following: is DELETE_TOA (=00:53)>
NEW_TOA (=00:48) (ves) AND NEW_LPTOA (=00:

10

15

20

25

30

35

40

45

50

55

60

o
o

10
20)<NEW_TOA (=00:48) (yes)?=>STOP (is there ear-
lier unprocessed NEW request—yes);

c. Apply the following: is DELETE_TOA (=00:53)>UP-
DATE_TOA (=00:51) (yes) AND UPDATE_LPTOA
(=00:51)<UPDATE_TOA (=00:51) (no)?=>then
approved to process (checking if there is unprocessed
UPDATE request);

d. (last condition is not checked, as the worker stops at the
first check).

At a first step, the RefreshWorker starts and

REFRESH_LPTOA is set to 0. NEW_LPTOA(=00:20),
UPDATE_LPTOA(=00:51), and DELETE_LPTOA(=00:

53), are retrieved. Documents are queried with
ACTION=REFRESH &
REFRESH_TOA>REFRESH_LPTOA (=0). Documents

doc12 and doc50 are then returned from the query. These
documents are then processed in the order of their time-
stamps. For each document the following is performed, with
document doc 12 as an example:

a. Retrieve: NEW_TOA (=00:12) (timestamp of NEW
operation); UPDATE_TOA(=0); DELETE_TOA (=0);
REFRESH_TOA (=00:54); REFRESHFULL_TOA
(=0); URL; and HTML head+metadata+body;

b. Apply the following: is DELETE_TOA< >0? No. (is
there earlier unprocessed DELETE request—no)

c. Apply the following: is UPDATE_TOA< >0? No. (is
there earlier unprocessed UPDATE request—no)

d. Apply the following: is NEW_TOA< >0? Yes.

e. Apply the following: is REFRESH_TOA (=00:54)>
NEW_TOA (=00:12) (yes) AND NEW_LPTOA (=00:
20)<NEW_TOA (=00:12) (no)?=>ok (is there earlier
unprocessed NEW request—no);

f. Refresh document;

g. Set UPDATE_LPTOA=00:54

Then doc50 is processed:

h. Retrieve: NEW_TOA (=00:50) (timestamp of NEW
operation); UPDATE_TOA(=0); DELETE_TOA (=00:
57); REFRESH_TOA (=00:55); REFRESHFULL,_
TOA (=0); URL; and HTML head+metadata+body;

i. Apply the following: is NEW_TOA< >0? Yes. (is there
earlier unprocessed NEW request)

j- Apply the following: is REFRESH_TOA (=00:55)>
NEW_TOA (=00:50) (yes) AND NEW_LPTOA (=00:
20)<NEW_TOA (=00:50) (yes)?=>STOP;

k. (is there earlier unprocessed NEW request—yes).

In order to continue processing the 50 documents in the
example, the RefreshfullWorker runs, although there is no
content to process. The functionality of the Refreshfull-
Worker is similar to the RefreshWorker, except that full
document gets refreshed, including the body. In additional
steps, the NewWorker, UpdateWorker, DeleteWorker, and
RefreshWorker function sequentially, in that order using the
processes described or otherwise envisioned herein.

Accordingly, at the conclusion of the processing of the
documents in this example, the integrity of the search index
has been maintained while the push operations have been
processed by the SSoR.

Referring to FIG. 3, according to an embodiment, is a
flowchart of a method 300 for maintaining a search index
while continuously receiving new push operations to an
SSoR. At step 310, an SSoR system 100 is provided. The
SSoR can be any of the SSoR systems described or other-
wise envisioned herein, and may comprise any of the
components described or otherwise envisioned herein. At a
minimum the SSoR comprises or is communication with
and/or utilized for a search index of the documents within
the SSoR.

US 9,442,970 B1

11

At step 320 of the method, the SSoR receives one or more
document actions requests. The document action requests
can be submitted, for example, by a user, or can be submitted
as part of an automated process. For example, a user may
create an action request through a user interface. The docu-
ment action request can be any of the actions described or
otherwise envisioned herein, including but not limited to a
new, update, and/or delete action, among others. For
example, a data submitter may make a change to an existing
SSoR document using a user interface that has to be reflected
in SSoR document, including while the search index is being
updated or otherwise maintained. Those changes will be
made to the SSoR document using an update action, such as
via the example UpdateWorker process described above.

At step 330 of the method, a timestamp is created and/or
assigned to each of the one or more document action
requests. As each document action request is received, it will
be assigned a timestamp. According to an embodiment, a
database record is created for each document action request.
The database record can include, for example, document
metadata such as a timestamp or other information.

At step 340 of the method, the create document actions
are processed in wherein create actions are processed first,
update actions are processed second, and delete actions are
processed last.

At step 350 of the method, the search index is updated
with the updated document database where new documents
have been created, and/or documents have been updated,
and/or documents have been deleted.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,

10

15

20

25

30

35

40

45

50

55

60

65

12

wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other

US 9,442,970 B1

13

device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

What is claimed is:

1. A method for maintaining a document database and
search index, the method comprising the steps of:

receiving a plurality of document action requests, wherein

the plurality of document action requests comprise at
least one of a create document action request, an update
document action request, or a delete document action
request;

associating a timestamp with each of the plurality of

received document action requests;

querying the document action requests to determine

which are associated with a first document action
request type;

processing any of the document action requests of the first

document action request type, wherein the document
action requests are processed in the order of their
associated timestamp, with earlier document action
requests of the first document action request type being
processed first; and

updating the search index using the updated document

database.

2. The method of claim 1, further comprising the steps of:

querying the document action requests to determine

which are associated with a second document action
request type; and

processing any of the document action requests of the

second document action request type, wherein the
document action requests are processed in the order of
their associated timestamp, with earlier document
action requests of the second document action request
type being processed first;

wherein the document action requests of the second

document action request type are processed only if the
document action requests of the first document action
request type have been processed.

3. The method of claim 2, further comprising the steps of:

querying the document action requests to determine

which are associated with a third document action
request type; and

processing any of the document action requests of the

third document action request type, wherein the docu-
ment action requests are processed in the order of their
associated timestamp, with earlier document action
requests of the third document action request type
being processed first;

20

25

30

35

40

45

14

wherein the document action requests of the third docu-
ment action request type are processed only if the
document action requests of the second document
action request type have been processed.

4. The method of claim 3, wherein create document action
requests are processed first, update document action requests
are processed second, and delete document action requests
are processed last.

5. The method of claim 1, wherein said search index is
based on document content, taxonomy data, and one or more
metadata fields from the document database.

6. The method of claim 1, further comprising the step of
creating a database record for each document action request,
wherein the database record comprises document data and
document metadata.

7. The method of claim 6, wherein the document metadata
comprises the timestamp for said document action request.

8. The method of claim 1, wherein each type of document
action request is processed by a different sub-process, and
further wherein each sub-process is associated with a time
that the sub-processed last processed a document action
request.

9. The method of claim 8, wherein the time that the
sub-processed last processed a document action request is
stored.

10. The method of claim 8, wherein each sub-process is
associated with a predetermined processing time threshold.

11. The method of claim 9, further comprising the step of
terminating a sub-process if the predetermined processing
time threshold is exceeded.

12. An SSoR system, the system comprising:

a document database comprising a plurality of documents;

a search index; and

a processor in communication with the document data-

base and the search index, the processor configured to:
(1) receive a plurality of document action requests, the
plurality of document action requests comprising at
least one of a create document action request, an update
document action request, or a delete document action
request; (ii) associate a timestamp with each of the
plurality of received document action requests; (iii)
query the document action requests to determine which
are associated with a first document action request type;
(iv) process any of the document action requests of the
first document action request type, wherein the docu-
ment action requests are processed in the order of their
associated timestamp, with earlier document action
requests of the first document action request type being
processed first; and (v) update the search index using
the updated document database.

13. The system of claim 12, wherein the processor is
further configured to: (i) query the document action requests
to determine which are associated with a second document
action request type; and (ii) process any of the document
action requests of the second document action request type,
wherein the document action requests are processed in the
order of their associated timestamp, with earlier document
action requests of the second document action request type
being processed first, wherein the document action requests
of the second document action request type are processed
only if the document action requests of the first document
action request type have been processed.

14. The system of claim 13, wherein the processor is
further configured to: (i) query the document action requests
to determine which are associated with a third document
action request type; and (ii) process any of the document
action requests of the third document action request type,

US 9,442,970 B1

15

wherein the document action requests are processed in the
order of their associated timestamp, with earlier document
action requests of the third document action request type
being processed first, wherein the document action requests
of' the third document action request type are processed only
if the document action requests of the second document
action request type have been processed.

15. The system of claim 14, wherein create document
action requests are processed first, update document action
requests are processed second, and delete document action
requests are processed last.

16. The system of claim 13, wherein the processor is
further configured to create a database record for each
document action request, wherein the database record com-
prises document data and document metadata.

17. The system of claim 1, wherein each type of document
action request is processed by a different sub-process, and
further wherein each sub-process is associated with a time
that the sub-processed last processed a document action
request.

18. The system of claim 17, wherein the time that the
sub-processed last processed a document action request is
stored.

19. The system of claim 17, wherein each sub-process is
associated with a predetermined processing time threshold.

20. The system of claim 19, wherein the processor is
further configured to terminate a sub-process if the prede-
termined processing time threshold is exceeded.

#* #* #* #* #*

10

15

20

25

16

